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In this paper we consider the problem of best approximation in lp , 1<p��. If
hp , 1<p<�, denotes the best p-approximation of the element h # Rn from a
proper affine subspace K of Rn, h � K, then limp � � hp=h*� , where h*� is a best
uniform approximation of h from K, the so-called strict uniform approximation.
Our aim is to give a complete description of the rate of convergence of &hp&h*�&
as p � �. � 2001 Academic Press
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1. INTRODUCTION

For x=(x(1), x(2), ..., x(n)) # Rn, the lp -norms, 1�p��, are defined
by

&x&p=\ :
n

j=1

|x( j)| p+
1�p

, 1�p<�,

&x& :=&x&�= max
1� j�n

|x( j)|.

Let K{< be a closed subset of Rn. For h # Rn"K and 1�p�� we say
that hp # K is a best p-approximation of h from K if

&hp&h&p�& f&h&p , \f # K.

The existence of hp is a well known fact. Moreover, if K is in addition a
convex set and 1<p<�, then there is an unique best p-approximation.
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Throughout this paper we assume that K is a proper affine subspace of Rn.
In this case, it is known (see for instance [6]) that hp , 1<p<�, is a best
p-approximation of h from K if and only if

:
n

j=1

(hp( j)& f ( j)) |hp( j)&h( j)| p&1 sgn(hp( j)&h( j))=0, \f # K. (1)

If p=� we call h� a best uniform approximation of h from K. In general,
the unicity of the best uniform approximation is not guaranteed. However,
a unique ``strict uniform approximation,'' h*� , can be defined [3]. The
Polya algorithm is an attempt to define h*� as the limit of the best p-approxi-
mation hp as p � �. If K is an affine subspace of Rn, then the Polya algorithm
converges to the strict uniform approximation [1, 4, 5],

lim
p � �

hp=h*� .

The strict uniform approximation also verifies the next property. Let H
denote the set of the best uniform approximations of h from K. For every
g # H we consider the vector {(g) whose coordinates are given by | g( j)&h( j)|,
j=1, 2, ..., n, arranged in decreasing order. Then {(h*�) is the only one that
gives a minimal lexicographic ordering.

In [2, 4] it is proved that the convergence of hp to h*� occurs at a rate
no worse than 1�p. In [4] the authors give a necessary and sufficient
condition on K for hp to coincide with h*� for p large, and also a necessary
and sufficient condition for

p &hp&h*�& � 0 as p � �. (2)

The aim of this paper is to give a detailed description of the rate of
convergence of the Polya algorithm; more precisely, we prove that if (2)
holds then there is a number 0<a<1 such that p &hp&h*�&�a p is bounded.

2. NOTATION AND PRELIMINARY RESULTS

Without loss of generality we may assume that h=0 and h*�( j)�0,
1� j�n, and that the coordinates of h*� are in decreasing ordering. Let
1=\1>\2> } } } >\s�0 denote all the different values of h*�( j), 1� j�n,
and [Jl] s

l=1 the partition of J :=[1, 2, ..., n] defined by Jl :=[ j # J : h*�( j)
=\l], 1�l�s. We henceforth put r=s if \s>0 and r=s&1 if \s=0.
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We can write K=h*�+V, where V is a proper linear subspace of Rn.
Note that it is possible to choose a basis B=[v1 , v2 , ..., vm] of V and a
partition [Ik] s

k=1 of I :=[1, 2, ..., m] such that for all i # Ik , 1�k�s,

(p1) vi ( j)=0, \j # Jl , 1�l<k,

(p2) vi ( j){0 for some j # Jk .

Denote nl=card(Jl) and mk=card(Ik). We have mk<nk ; otherwise we can
take a linear combination of the vectors vi , i # Ik , in such way that the
definition of h*� is contradicted. In this partition it is possible that Ik=<
for some k, 1�k�s. However, for simplicity of notation, we suppose that
Ik {< for 1�k�r, this involves no loss of generality. In order to get our
main theorem, we use the following result [4].

Theorem 1. In the above conditions, p &hp&h*�& � 0 as p � � if and
only if

:
j # Jk

v i ( j)=0, \i # Ik , 1�k�r.

Moreover, hp=h*� for p large if and only if

:
j # Jl

vi ( j)=0,

for all i # Ik , 1�k�r, and for all 1�l�r.

The following notation will be used throughout the paper. For k, l=1,
2, ..., r, we consider the matrices Mkl=(vi ( j)) (i, j) # Ik_Jl

, and we put
I0=�r

k=1 Ik , m0=card(I0), J0=� r
l=1 Jl , n0=card(J0). Finally, if A is a

matrix then we denote by AT the transpose matrix of A and by &A& the
row-sum norm of A.

Lemma 1. Let [xp] be a sequence of vectors in Rm"[0] such that
p &xp& � 0 as p � �. Then, for a fixed vector b # Rm and for all ;>0,

\;+ :
m

j=1

b( j) xp( j)+
p

=; p+; p&1p :
m

j=1

b( j) xp( j)+; p&2R( p),

where R( p)=o( p &xp&).

Proof. The proof follows immediately from the application of Taylor's
formula to the function .(x)=(1+x) p at x=0. K
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3. RATE OF CONVERGENCE

Theorem 2. Let K be a proper affine subspace of Rn, 0 � K. For 1<p<�,
let hp denote the best p-approximation of 0 from K and let h*� be the strict
uniform approximation. Suppose that p &hp&h*�& � 0 as p � �. Then there
are L1 , L2>0 such that

L1a p�p &hp&h*�&�L2a p, (3)

where

a= max
1�l, k�r {

\l

\k
: :

j # Jl

vi ( j){0 for some i # Ik= (4)

and a is assumed to be 0 if �j # Jl vi ( j)=0 for all i # Ik , 1�k, l�r.

Proof. Let B=[v1 , v2 , ..., vm] and Ik , 1�k�s, as above. If hp=h*� for
p large then, by Theorem 1, a=0 and (3) holds. Therefore we assume
hp {h*� for p large. This condition is just equivalent to

max
1�k, l�r {max

i # Ik } :
j # Jl

vi ( j)}=>0. (5)

Putting f =hp+vi , i # I0 , in (1) we have, for p large,

:
j # J0

vi ( j) hp( j) p&1+ :
j # Jr+1

vi ( j) |hp( j)| p&1 sgn(hp( j))=0, \i # I0 .

(6)

This non-linear system can be written as

MH T
p +NK T

p =0, (7)

where M and N are the matrices defined by

M=(vi ( j)) (i, j) # I0_J0
, N=(vi ( j)) (i, j) # I0_Jr+1

and Hp , Kp denote the vectors in Rn0 and Rnr+1, respectively, whose
components are given by

Hp( j)=hp( j) p&1, 1� j�n0

Kp( j)=|hp(n0+ j)| p&1 sgn(hp(n0+ j)), 1� j�nr+1 .

If r=s then NK T
p is assumed to be the null vector in Rm0.
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Let *p=(*p(1), *p(2), ..., *p(m)) be the vector in Rm such that

hp=h*�+ :
m

k=1

*p(k) vk .

Note that the condition p &hp&h*�& � 0 as p � � is equivalent to p &*p& � 0
as p � �.

If j # Jl , 1�l�r, then from Lemma 1,

hp( j) p&1=\h*�( j)+ :
m

k=1

*p(k) vk( j)+
p&1

=\ p&1
l +\ p&2

l ( p&1) :
m0

k=1

*p(k) vk( j)+\ p&3
l Rp( j),

with Rp( j)=o( p &4p &), where 4p :=(*p(1), ..., *p(m0)). Thus we can
express the vector H T

p like

H T
p =2 p&1

J0
(T+( p&1) 2 p&2

J0
M T4T

p +2 p&3
J0

RT
p ,

where ( :=(1, 1, ..., 1) # Rn0, Rp=(Rp(1), ..., Rp(n0)) and 2J0
:=($ij)(i, j) # J0_J0

is the diagonal matrix of order n0_n0 such that $jj=\l if j # Jl , 1�l�r.
Substituting in (7) we obtain the system

M(2 p&1
J0

(T+( p&1) 2 p&2
J0

M T4T
p +2 p&3

J0
RT

p )+NK T
p =0. (8)

Let 2I0
=($� ij) (i, j) # I0_I0

be the diagonal matrix of order m0 _m0 such that
$� ii=\k if i # Ik , 1�k�r. Multiplying (8) by 2&p+2

I0
:=(2&1

I0
) p&2 we have

( p&1) 2&p+2
I0

M2 p&2
J0

MT4T
p

=&2&p+2
I0

M2 p&1
J0

(T&2&p+2
I0

M2 p&3
J0

RT
p &2&p+2

I0
NK T

p . (9)

Observe that the multiplication by 2&p+2
I0

is equivalent to divide by \ p&2
k

each of the equations in (6) obtained for i # Ik . This operation is justified
because vi ( j)=0 for all j # Jl if j<k. Next we study each of the terms in
the former system. An easy computation shows that

A( p) :=2&p+2
I0

M2 p&2
J0

M T=\
A11( p)
A21( p)

} } }
Ar1( p)

A12( p)
A22( p)

} } }
Ar2( p)

} } }
} } }
} } }
} } }

A1r( p)
A2r( p)

} } }
Arr( p)+ ,
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where Aij ( p), i, j=1, 2, ..., r, is the matrix of order mi_mj given by

Aij ( p)= :
r

k=i \
\k

\i +
p&2

MikM T
jk .

Thus,

Aij := lim
p � �

Aij ( p)=MiiM T
ji .

Since Mji is the null matrix if j>i, we conclude that

A := lim
p � �

A( p)=\
M11M T

11

M22 M T
12

} } }
MrrM T

1r

0
M22 M T

22

} } }
MrrM T

2r

} } }
} } }
} } }
} } }

0
0

} } }
MrrM T

rr
+

is a triangular matrix by blocks and so

det(A)= `
r

i=1

det(Mii M T
ii ){0.

In particular we have proved that the matrix A( p) is non singular for p
large.

Analogously, denoting by Bp=&2&p+2
I0

M2 p&1
J0

(T it is easy to check
that

Bp(i)=&\k :
r

l=1
\\ l

\k+
p&1

:
j # Jl

vi ( j), i # Ik , 1�k�r.

Let a defined by (4). From (5) and Theorem 1, we have 0<a<1.
Moreover, b :=limp � � &Bp&�a p>0.

Similarly, writing Cp=&2&p+2
I0

M2 p&3
J0

RT
p we obtain

Cp(i)=&
1

\k
:
r

l=1
\\ l

\k+
p&3

:
j # Jl

vi ( j) Rp( j), i # Ik , 1�k�r.

Since vi ( j)=0 for all (i, j) # Ik_J l , k>l, and Rp( j)=o( p &2p&), it follows
that

lim
p � �

&Cp &
p &4p&

=0.

Finally, denoting Dp=&2&p+2
I0

NKT
p we get immediately limp � � &Dp&�ap=0.
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With this new notation the system (9) can be written as

( p&1) A( p) 4T
p =Bp+Cp+Dp ,

and so

( p&1) &4p&=&A( p)&1 (Bp+Cp+Dp)&

�&A( p)&1& (&Bp&+&Cp&+&Dp &).

Therefore,

( p&1) &4p& \1&
&A( p)&1& &Cp &

( p&1) &4p& +�&A( p)&1& &Bp&+&A( p)&1& &Dp&.

(10)

Dividing (10) by a p and taking limits as p � � we have

lim
p � �

p &4p&
a p �&A&1& b.

In similar way,

&Bp&�( p&1) &A( p)& &4p & \1+
&Cp&

( p&1) &A( p)& &4p&++&Dp&

and then

lim
p � �

p &4p&
a p �

b
&A&

.

Finally, we conclude that

b
&A&

� lim
p � �

p &4p&
a p �b &A&1&. (11)

If r=s or Js=< then the proof is complete. In the other case we put

hp =h*�+ :
m

i=1

*p(i) vi

=h*�+ :
i # I0

*p(i) vi+ :
i # Is

*p(i) vi=h*�+up+wp .
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By (11), we have actually proved that p &up &�a p is bounded. Our purpose
is to prove that p &wp&�a p is also. Obviously, we need only consider the
case wp {0 for p large. Taking f =hp+wp in (1) we obtain

:
j # Js

wp( j) |up( j)+wp( j)| p&1 sgn(up( j)+wp( j))=0. (12)

If up( j)=0 for all j # Js , then by (12) wp( j)=0 for all j # Js and hence
wp=0. Therefore, we can assume that for all p�1, up( j){0 for some j # Js

and wp {0. Under these conditions, let ;=inf &up &�&wp&. To conclude the
proof we will prove that ;>0. Suppose ;=0. Then there exists a sub-
sequence, pk � �, such that &upk

&�&wpk
& � 0. Let J (1)

s be the set of indices
in Js such that

lim
k � �

|wpk
( j)|�&wpk

&{0.

Note that J (1)
s {<. Multiplying (12) by 2 pk&1�&wpk

& pk we obtain, for k
large,

0= :
j # Js

(1)

|wpk
( j)|

&wpk
& }

2upk
( j)

&wpk
&

+
2wpk

( j)
&wpk

& }
pk&1

+ :
j # Js"Js

(1)

wpk
( j)

&wpk
& }

2upk
( j)

&wpk
&

+
2wpk

( j)
&wpk

& }
p&1

sgn(upk
( j)+wpk

( j))

� :
j # Js

(1)

|wpk
( j)|

&wpk
& }

2upk
( j)

&wpk
&

+
2wpk

( j)
&wpk

& }
pk&1

& :
j # Js"Js

(1)

|wpk
( j)|

&wpk
& }

2upk
( j)

&wpk
&

+
2wpk

( j)
&wpk

& }
pk&1

.

Taking limits as k � � we get a contradiction. K

The following corollary summarizes the results in Theorems 1 and 2.

Corollary 1. Let K be a proper affine subspace of Rn, 0 � K. Write
K=h*�+V, where V is a proper linear subspace of Rn, and let B=
[v1 , v2 , ..., vm] a basis of V and [Ik] s

k=1 a partition of [1, 2, ..., m] verifying
(p1) and (p2). Then there exist L1 , L2>0 such that

L1a p�p &hp&h*�&�L2a p, (13)
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where

a= max
1�l, k�r {

\l

\k
: :

j # Jl

vi ( j){0 for some i # Ik=
and a is assumed to be 0 if �j # Jl

vi ( j)=0 for all i # Ik , 1�k, l�r.

Proof. It is sufficient to note that a=1 if and only if �j # Jl
vi ( j){0 for

some i # Jl . In this case, p &hp&h*�& does not converge to 0 as p � �. This
condition is equivalent to hp converging to h*� with rate exactly 1�p. K

A Numerical Example. Consider h*�=(1, 1, 1, 1, 1
2 , 1

2 , 1
3 , 1

3 , 1
3 , 0, 0) and

V=( (1, &1, 0, 0, 1, &1, 2, &1, 0, 1, 1), (1, 1, &1, &1, 0, 1, &1, 1, 2, 1, 1),

(0, 0, 0, 0, 0, 0, &1, 2, &1, 2, 0), (0, 0, 0, 0, 0, 0, 1, 0, &1, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2)) .

First, we construct the matrix

J1 J2 J3 J4

1 1 1 1 1
2

1
2

1
3

1
3

1
3 0 0

I1

1
1

&1
1

0
&1

0
&1

1
0

&1
1

2
&1

&1
1

0
2

1
1

1
1

v1

v2

I2 .

I3

0
0

0
0

0
0

0
0

0
0

0
0

&1
1

2
0

&1
&1

2
0

0
0

v3

v4

I4 0 0 0 0 0 0 0 0 0 1 2 v5

Note that in this example I2=<. Since the sum of coordinates in the
diagonals blocks, (IkJk), k=1, 2, 3, is zero, we deduce that p &hp&h*�& � 0
as p � �. Next we construct the matrix Q=(qkl)k, l=1, 2, 3 , qkl=maxi # Ik

|�j # Jl
vi ( j)| (if k=2 we put qkl=0), and the matrix R=(\ l �\k)k, l=1, 2, 3 ,

Q=
I1

I2

I3

J1

0
0
0

J2

|1|
0
0

J3

2
0
0

R=
I1

I2

I3

J1

1
2
3

J2

|1�2|
1

3�2

J3

1�3
2�3
1

.

By definition we obtain a=1�2 and we conclude that the rate of convergence
of hp to h*� is 1�( p2 p).
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Remarks. It is possible to obtain additional information for the rate of
convergence for each of the blocks of coordinates hp( j), j # Jl , 1�l�r,
by means of a inductive procedure. More precisely, considering only the
equations in (6) for i # I1 we have

:
j # J1

vi ( j) hp( j) p&1=& :
j # J"(J1 _ Js)

vi ( j) hp( j) p&1

& :
j # Js

v i ( j) |hp( j)| p&1 sgn(hp( j)). (14)

For j # J1 ,

hp( j) p&1=\1+ :
k # I1

*p(k) vk( j)+
p&1

=1+( p&1) :
k # I1

*p(k) vk( j)+Rp( j),

with Rp( j)=o( p &4 (1)
p &), where 4 (1)

p =(*p(k))k # I1
. Substituting in (14) and

denoting by Fp(i) the second member in (14) we obtain the system

( p&1) M11 M T
11(2(1)

p )T+M11(R (1)
p )T=FT

p ,

where R (1)
p =(Rp( j)) j # J1

. Since M11 M T
11 is non-singular and &Fp&�\ p

2 is
bounded, we conclude that the p*p(i), i # I1 , converge to 0 at a rate no
worse than \ p

2 . Taking into account this information and applying the
same procedure to the equations in (6) for i # I2 we deduce that the rate of
convergence of p*p(i) to 0, i # I2 , is at least (\3�\2) p. Now, we can reiterate
this argument for the others blocks of coordinates. Finally, this first estima-
tion of the rate of convergence can be used to obtain an estimation more
precise. The basic idea is to apply the same technique to the equations
in (6) for i # �k

i=1 Ii , k=1, 2, ..., r. Note that this inductive procedure
supposes, in fact, another strategy to prove Theorem 1.
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