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In this paper we consider the problem of best approximation in /,, 1 <p < oo. If
h,, 1<p<oo, denotes the best p-approximation of the element heR"” from a
proper affine subspace K of R”, h¢ K, then lim,_, ., h,=/h%, where h% is a best
uniform approximation of & from K, the so-called strict uniform approximation.
Our aim is to give a complete description of the rate of convergence of ||/, —h% |
as p— 00.  © 2001 Academic Press
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1. INTRODUCTION

For x=(x(1), x(2), .., x(n)) e R", the /,-norms, 1<p< oo, are defined
by

n 1/p
|x|,,=<z|x<j>|P> . l<p<o,
j=1

<j<n

Iell = flxll o = max fx()].

Let K# J be a closed subset of R”. For 7e R"\K and 1 <p< oo we say
that /2, € K is a best p-approximation of / from K if

lhy=hll, <If=nl, — VfeK

The existence of /1, is a well known fact. Moreover, if K is in addition a
convex set and 1 <p < oo, then there is an unique best p-approximation.
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Throughout this paper we assume that K is a proper affine subspace of R".
In this case, it is known (see for instance [6]) that /2,, 1 <p < o0, is a best
p-approximation of /4 from K if and only if

Y () = f) 1y () = h()IP ™ sgn(hy(j) —h(j)) =0, V¥feK. (1)

j=1

If p =0 we call /1, a best uniform approximation of 4 from K. In general,
the unicity of the best uniform approximation is not guaranteed. However,
a unique “strict uniform approximation,” 4%, can be defined [3]. The
Polya algorithm is an attempt to define 4% as the limit of the best p-approxi-
mation /1, as p — oo. If K'is an affine subspace of R”, then the Polya algorithm
converges to the strict uniform approximation [1, 4, 57,

lim /1, = h*% .

p—> 0

The strict uniform approximation also verifies the next property. Let H
denote the set of the best uniform approximations of / from K. For every
g € H we consider the vector 7(g) whose coordinates are given by | g(j) — A(j)|,
j=1,2, .., n, arranged in decreasing order. Then 7(4% ) is the only one that
gives a minimal lexicographic ordering.

In [2,4] it is proved that the convergence of 4, to ¥ occurs at a rate
no worse than 1/p. In [4] the authors give a necessary and sufficient
condition on K for 4, to coincide with 4% for p large, and also a necessary
and sufficient condition for

plh,—h%] -0 as p- oo 2)

The aim of this paper is to give a detailed description of the rate of
convergence of the Polya algorithm; more precisely, we prove that if (2)
holds then there is a number 0 <a <1 such that p |4, — A% ||/a” is bounded.

2. NOTATION AND PRELIMINARY RESULTS

Without loss of generality we may assume that 27=0 and A% (j)>0,
1 <j<n, and that the coordinates of 4% are in decreasing ordering. Let
l=p,>p,> --- >p,=0 denote all the different values of 4% (), | <j<n,
and {J,}7_, the partition of J:={1,2, .., n} defined by J,:={jeJ: h%())
=p;}, 1 <I<s. We henceforth put r=sif p,>0 and r=s—1if p,=0.
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We can write K=h* + 7", where 7" is a proper linear subspace of R”.
Note that it is possible to choose a basis 4 = {v, v, ..., v,,} of ¥ and a
partition {7, }{_, of I:={1,2, .., m} such that for all ie I, 1 <k <s,

(p1) vi(j) =0, VjeJ,, 1<I<k,
(p2) v;(j) #0 for some jeJ,.

Denote n;,=card(J,) and m, =card(/,). We have m, <n,; otherwise we can
take a linear combination of the vectors v;, i€ l,, in such way that the
definition of 4% is contradicted. In this partition it is possible that I, = &
for some k, 1 <k <s. However, for simplicity of notation, we suppose that
I, # & for 1 <k <r, this involves no loss of generality. In order to get our
main theorem, we use the following result [4].

THEOREM 1. In the above conditions, p ||h,—h% || -0 as p— co if and
only if

Y v(j)=0, Viel,, 1<k<r

j€Jy

Moreover, h,=h% for p large if and only if

Z Ui(j):O,

JjeJ;
foralliel,, 1 <k<r, and for all 1 <I<r.

The following notation will be used throughout the paper. For k, /=1,
2,..,r, we consider the matrices M= (v:(/)) jer s, and we put
Iy= U1 I, mo=card(ly), Jo=Uj_,J;, ng=card(J,). Finally, if 4 is a
matrix then we denote by A7 the transpose matrix of 4 and by || 4| the
row-sum norm of 4.

LEMMA 1. Let {x,} be a sequence of vectors in R™\{0} such that
plIx, | =0 as p— oo. Then, for a fixed vector be R™ and for all >0,

(5 £ 001500 ) =m0 £ 500 500457 2R )
where R(p)=o(p |Ix,|).

Proof. The proof follows immediately from the application of Taylor’s
formula to the function ¢(x)=(1+x)? at x=0. |
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3. RATE OF CONVERGENCE

THEOREM 2. Let K be a proper affine subspace of R", 0 ¢ K. For 1 <p < o0,
let h, denote the best p-approximation of 0 from K and let h%, be the strict
uniform approximation. Suppose that p |h,—h% || -0 as p— co. Then there
are Ly, L,>0 such that

Llapgp ”hp_hfou <L2ap) (3)
where
a= max {pl: > vi(j)aéOforsomeieIk} (4)
1<tik<r lpr /o,

and a is assumed to be 0 if 3 ;c ;v;(j)=0 for all iel, 1<k, I<r.
Proof. Let B={v,,0,,..,0,,} and I;, | <k <s, as above. If 1, = h¥, for

b m

p large then, by Theorem 1, a=0 and (3) holds. Therefore we assume
h, # h%, for p large. This condition is just equivalent to

5 vi(j>‘}>o. (5)

max {max
JjeJ;

1<k, I<r iel)

Putting f'=h,+v;, iel,, in (1) we have, for p large,

2 v (NP + Z DI (DIP~ sgn(hy () =0, Viel,.

Jjedy jed,, (6)

This non-linear system can be written as
T T__
MH, + NK, =0, (7)
where M and N are the matrices defined by
M= (Ui(j))(i,j)eloxjos N= (vi(j))(i,j)eloxJH_l

and H,, K, denote the vectors in R™ and R™+1, respectively, whose
components are given by

Hp(j)zhp(j)p_ls 1<]<”0
Kp(j):|hp(n0+j)|p_lSgn(hp(no—‘rj))’ 1<j<nr+1'

If r =5 then NK; is assumed to be the null vector in R™o.
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Let A,=(4,(1), 4,(2), ..., 4,(m)) be the vector in R™ such that

> P

Note that the condition p ||, —h% | — 0 as p — oo is equivalent to p |4, [ — 0
as p — oo.
If jeJ,, 1 <I<r, then from Lemma 1,

m r—1
()Pt = (hz;m I SRTS vkm)
k=1
P gl p—1) S k) vi) 4 pP R,
k=1

with R, (j)=o0(p [|4,]), where A,:=(4,(1),.., 4,(mq)). Thus we can
express the vector H like

HI=A2"10T+(p—1) 452 MTAT+ 45 RL,
where ¥ :=(1, 1, ., 1) eR™, R,=(R,(1), ., Ry(no)) and 4, := (), jyes,xs,
is the diagonal matrix of order ny X ny such that 6,=p, if jeJ,, 1 <I<r.
Substituting in (7) we obtain the system

M(AZ = YT+ (p—1) A5 2MTA] + A% RT) + NK[ =0. (8)

Let A, =(04)(;, jye,x1, b€ the diagonal matrix of order my x m, such that
o,=p, if iel,, 1 <k <r. Multiplying (8) by Ag"” = (A,;l)f”’2 we have

(p—1) 477> MAS~>M AL
= AP MALT YT - AP MAL T RT — AP Y2NKE. (9)
Observe that the multiplication by 4, »*? is equivalent to divide by p7 >
each of the equations in (6) obtained for ie I,. This operation is justified

because v;(j) =0 for all jeJ, if j<k. Next we study each of the terms in
the former system. An easy computation shows that

Ay(p) Ap(p) -+ Ay(p)

A A e A
Apyimagrmag =) S0 AP T,

Arl(p) Ar2(p) Arr(p)
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where A4;(p), i, j=1,2, .., r, is the matrix of order m; x m; given by

r p p—2
n=y <p"> MM,

k=i

Thus,

A= lim A;(p)=M;M;.

P — ©

Since M; is the null matrix if j > i, we conclude that

M M7, 0 0
MypMT, MyMIL, . 0
— hm A(p): 22 22 22
e
M, M{; M, M; o M, MT

is a triangular matrix by blocks and so

det(A ﬂ det(M ;M) #0.

i=1

In particular we have proved that the matrix A(p) is non singular for p
large.

Analogously, denoting by B,= —4,; 7 +2MA§0_1 Y7 it is easy to check
that

r p—1
B == ¥ (2 S ulien 1<ker
=1 \Pk jed,

Let a defined by (4). From (5) and Theorem 1, we have 0<a<1.
Moreover, b:=lim,_, ., |B,|/a” > 0.

Similarly, writing C, = — Agl’“ MA 507 3 RpT we obtain
p—3
C - Z < > Z Ut(])Rp(J)a ie[k, 1<k<r
pk =1 \Pk jed,

Since v,(j) =0 for all (i, j)e [l xJ;, k>1, and R,(j)=o(p |4,]), it follows
that

IC I _
peo p 4,

Finally, denoting D, = — A4, ?** NK we get immediately lim, _, . | D, |/a? =0
4 I 4 V4 4
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With this new notation the system (9) can be written as

(p—1) (p)AT B,+C,+D,,

and so
(p—1) 4, =l4(p)~ "' (B,+C,+D,)|

<[A(p) M B, I+ [1Cyll + 1D, 1)

Therefore,
|A(p) " IIC, | _ _
(p—1) 4, <1 AP NCTN <y (o)1) 18,1+ 14(p) =1 1D, 1.
(p—1) 114,
(10)
Dividing (10) by @ and taking limits as p - oo we have
4

im 24l g1y,

p—> © a?
In similar way,

1B, <(p—1) |4(p)] |4, <1 T 1G] >+ D,
(p—=1) [ A(p)| 14,
and then
VAR
pooo ab HAH
Finally, we conclude that
b 4
< lim pl “<b 141, (11)

141>

If r=s or J,= J then the proof is complete. In the other case we put

hy =h%+ Y, 2li) v;

=h¥+ Y () v+ Y A (i) v;=h% +u,+w,.

iel, iel
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By (11), we have actually proved that p ||u, ||/a” is bounded. Our purpose
is to prove that p [|w,|//a? is also. Obviously, we need only consider the
case w, # 0 for p large. Taking /' =h,+w, in (1) we obtain

2 wp( ) [up(7) + w7 sgn(uy( /) +w,() =0. (12)

JjeJy

If u,(j)=0 for all jeJ,, then by (12) w,(j)=0 for all jeJ; and hence
w, = 0. Therefore, we can assume that for all p > 1, u,( ) # 0 for some je J;
and w, #0. Under these conditions, let f#=inf [[u,]/|w,|. To conclude the
proof we will prove that >0. Suppose f=0. Then there exists a sub-
sequence, p; — 0, such that [u, [|/|lw,, || = 0. Let J{V be the set of indices
in J, such that

im o, ()1, | #0.

Note that J{" # . Multiplying (12) by 27%~'/|w, |? we obtain, for k
large,

0= W (D | 26, () 2w, ()| 2!
jea® Iwp 1wy 1 llwp, |
W) |20, (J)  2,(j) [P~ | |
+ i 12 Py sgn(upk(]) + ka(]))
jed M W, 11 1w, I [wp, |l
|ka(j)| zupk(j) pr,((j) P!
jeJ§1> prkH HkaH HWP/(H
B [wo (D |20y (7)) 2w, () [Pe1
jeJJ\J_(vl) HWI’kH HkaH HkaH

Taking limits as k — oo we get a contradiction. ||
The following corollary summarizes the results in Theorems 1 and 2.
COROLLARY 1. Let K be a proper affine subspace of R", 0¢ K. Write
K=h* +7v", where V" is a proper linear subspace of R", and let % =

{v1, Uy s Uy} @ basis of 7~ and {1,.} 5 _ | a partition of {1, 2, ..., m} verifying
(pl) and (p2). Then there exist L, L,>0 such that

Lya?<p |h,—h% | < Lya?, (13)
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where
a= max {pl: > vi(j);éOforsomeieIk}
I<Lk<r (Pg jed,
and a is assumed to be 0 if 3 ;c ; v;(j) =0 for all ie I}, 1 <k, I<r.

Proof. 1t is sufficient to note that a=1 if and only if >, ; v;(j) #0 for
some i e J;. In this case, p |4, —h% | does not converge to 0 as p — oo. This
condition is equivalent to /, converging to /¥ with rate exactly 1/p. |l

A NUMERICAL ExampLE. Consider 2% =(1,1,1,1,3,3,%,4,3,0,0) and
v ={1,-1,0,0,1,-1,2, —1,0,1,1), (1,1, —1, —1,0, 1, —1, 1,2, 1, 1),
(0,0,0,0,0,0, —1,2, —1,2,0),(0,0,0,0,0,0, 1,0, —1, 0, 0),

(0,0,0,0,0,0,0,0,0,1,2)>.

First, we construct the matrix

Jl J2 J3 J4

1 1 1 1 11 1 1 0 0
; 1 =1 0 0 1 —1 2 -1 0 1 1 v
! 1 1 -1 -1 0 1 -1 1 2 1 1 v,
I .
/ 0 0 0 0 0 0 -1 2 -1 2 0 u,
3 0 0 0 0 0 0 1 0 -1 0 0 v,
I, 0 0 0 0 0 0 0 0 0 1 2 v

Note that in this example I, = ¢J. Since the sum of coordinates in the
diagonals blocks, (1;.J;), k=1, 2, 3, is zero, we deduce that p |4, —h% | — 0
as p— o0. Next we construct the matrix Q=(qgu)r 1=1,2,3> Gu=MmaX;cy,
|Zj€.]l v;(j)| (if k=2 we put ¢g;,=0), and the matrix R = (pl/pk)k,lfl, 2,35

Ji Sy T Ji Sy s
L 0 2 L 1/3
Q_zr2 0 0 0 L, 2 1 23
I, 0 0 0 I, 3 32 1

By definition we obtain a = 1/2 and we conclude that the rate of convergence
of h, to h¥ is 1/(p27).



118 QUESADA AND NAVAS

Remarks. 1t is possible to obtain additional information for the rate of
convergence for each of the blocks of coordinates 4,(j), jeJ;, 1<I<r,
by means of a inductive procedure. More precisely, considering only the
equations in (6) for ie I, we have

YovNh (NP ==Y 0,() hy(j)? !
jeJ; jeI\(J v Jy)
- Z NP~ sgn(hy())). (14)

For jeJ,,

()Pt = (1 LY Ak vkm)p

kel

= p—1) Y ik 7+ R,()),

kel

with R,(j)=o(p | A ]]), where A5 = (4,(k))xcy,. Substituting in (14) and
denotmg by F,(i) the second member in (14) we obtain the system

(p—1) M11M1T1(A,(,1))T+M11(R§,1))T: F,,T,

where R(Y=(R,(/));e,,- Since M M{, is non-singular and |F,|/p% is
bounded, we conclude that the p/,(i), iel;, converge to 0 at a rate no
worse than p5. Taking into account this information and applying the
same procedure to the equations in (6) for i e I, we deduce that the rate of
convergence of pA,(i) to 0, i€ I,, is at least (p;/p,)”. Now, we can reiterate
this argument for the others blocks of coordinates. Finally, this first estima-
tion of the rate of convergence can be used to obtain an estimation more
precise The basic idea is to apply the same technique to the equations

n (6) for ie U*_,I,, k=1,2,..r. Note that this inductive procedure

i=1"i>

supposes, in fact, another strategy to prove Theorem 1.
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